

2010 Users Conference

Database Structure

Training & Setup Guide

Last Updated: December 22, 2009

Database Structure

Page 2 of 52

About this Guide
This SedonaOffice Database Structure Training Guide is for use by SedonaOffice customers only. This

guide is to be used in conjunction with an approved training class provided by SedonaOffice, and is not

meant to serve as an operating or setup manual.

This training and setup guide is for experienced SedonaOffice users who have knowledge of the

database setup. While this guide will review some of the basic setup necessary, this guide is not

intended to teach Database Structure basics and assumes the user has knowledge of SQL and of the

SedonaOffice application.

SedonaOffice reserves the right to modify the SedonaOffice product described in this guide at any time

and without notice. Information in this guide is subject to change without notice. Companies, names

and data used in examples herein are fictitious unless otherwise noted. In no event shall SedonaOffice

be held liable for any incidental, indirect, special, or consequential damages arising out of or related to

this guide or the information contained herein. The information contained in this document is the

property of SedonaOffice.

This guide will be updated periodically, be sure to check our website at www.sedonaoffice.com for the

most current version.

Copyright 2009/2010

http://www.sedonaoffice.com/

Database Structure

Page 3 of 52

Table of Contents

About this Guide ... 2

Overview ... 5

Each Company is a Database .. 5

Databases Contain Tables, Views, and Stored Procedures ... 5

Tables Contain Fields .. 5

Linking Tables .. 6

Link Types .. 6

Customer Structure ... 7

Invoice Structure ... 8

Cash Structure... 9

Vendor Structure .. 10

Vendor Bills Structure ... 11

Check Structure ... 12

Job Structure ... 13

Service Ticket Structure .. 14

Inventory structure ... 15

General Ledger Structure .. 16

Open Database Connectivity (ODBC) .. 16

Creating an ODBC Connection with Excel ... 16

Building a Query Using Excel and MS Query ... 19

Using Microsoft Access to Review Your Data .. 22

Connecting Access via ODBC ... 22

Writing a query with Access.. 26

Database Structure

Page 4 of 52

Creating a Report with Access .. 31

Creating a Grouped and Sub Totaled Report .. 35

Basic SQL Language ... 43

Select Keyword.. 43

From Keyword ... 44

Join Keyword ... 44

Inner Join ... 44

Left Outer Join ... 45

Right Outer Join .. 45

Full Outer Join ... 45

Where Keyword .. 46

Logical Operators .. 47

Other Where Clause Filters ... 48

Order By Keywords ... 50

Union Keyword ... 51

Database Structure

Page 5 of 52

Overview
This guide is intended to teach you how to access data from a SedonaOffice database. Data extracted

from a database can be used for many different purposes both internally and externally for an

organization. While this guide will review a variety of different techniques, it is impractical to detail

each and every type method that can be used to extract data.

Each Company is a Database
Each SedonaOffice company is its own unique database within the SQL server. In addition to the

various company databases, there is an additional database that helps to controls access to the

company databases. This access control database is named SedonaMaster.

SedonaMaster contains list of company names and the database associated with each name. All other

data about a company is contained within the company database. All of the setup information, names,

addresses, part numbers, service tickets, etc., for a company, are stored within the same database. The

structure of the database will remain the same for all companies. The differences in how companies

operate are contained in the setup tables. If a feature of SedonaOffice is not used, the data structure

will still exist but may be empty of data.

Databases Contain Tables, Views, and Stored Procedures
The main structures in a database are tables, views and stored procedures. Tables contain the raw data,

the actual names, addresses, etc.

Views are premade queries that will return sets of data automatically. If there is a set of data you are

going to regularly extract, you may want to think about making a view. SedonaOffice uses several views

in supplying data to the client. Do NOT alter these or your system may cease to operate correctly1.

Stored procedures are routines containing SQL code. They can be created to act as a view but are

usually used to manipulate the data. Stored procedures also can take parameters, values that modify

how the stored procedure will operate. Most of the business logic in SedonaOffice is handled by stored

procedures. They are encrypted and locked for safety and security. Do NOT delete or replace a stored

procedure or your system will cease to operate correctly2.

Tables Contain Fields
Fields contain your actual data. They are different types:

 Text including varchar, nvarchar and char. The length of the field in characters (including spaces

and punctuation) is defined when the field is created.

 Numeric including integer, double and money. What range and if a fractional decimal amount is

supported is defined when the field is created.

1
 Unless directed to by a SedonaOffice support person.

2
 Unless directed to by a SedonaOffice support person.

Database Structure

Page 6 of 52

 Datetime. Microsoft SQL server does not contain a field type for date or one for time, all date

and time related fields are Datetime fields.

Linking Tables
Tables are linked via fields that end in Id. In each table, the first field is the Identity field for that table.

Identity fields are not editable nor should you try. Identity fields are unique. This number is

automatically assigned by the SQL server. Once assigned, a number is never reused, not even if it was

previously deleted. This Identity field is the “Address” of the record. Other tables that point to this

table will have an Id that matches the “Address” of the record. IE Customer_Id in the AR_Customer_Bill

record will point to the Customer_Id field in the AR_Customer table. The Customer_Id in the

AR_Customer table is the Identity or “Address” of that record. Notice that the name of an Id is the same

as the table name in our example. This is true of all ID’s with very few exceptions.

Link Types
Table links are defined by the relationship of records in one table to the records in another table. There

are three basic link models.

One to one: Each record in one table matches to exactly one record in the other table. IE AR_Customer

and AR_Customer_Userdef

One to many: Each record in one table matches to many records in the other table. IE AR_Invoice and

AR_Invoice_Item

Many to one: Many records in one table match to one record in the other table. IE AR_Customer and

AR_Branch

The following diagrams are not meant to be completely accurate or to be used as a definition of the

database structure. They are a simplified diagram to give an outline of the relationship of the various

tables that combine to make up a data structure.

Database Structure

Page 7 of 52

Customer Structure

AR_Customer_

Bill

AR_Customer_

Bill

AR_Customer_

Site

AR_Customer_

System

AR_Customer_

Bill

AR_Customer
AR_Customer_

Contact

AR_Branch
AR_Taxing_

Group

AR_Customer_

Recurring

AR_Customer_

Equipment

SV_Service_

Ticket

AR_Customer_

Userdef

SY_System SY_Panel_Type OE_Job
AR_Contract_

Form

SV_Warranty
SV_Service_Leve

l

CS_Alarm_

Company

SV_Service_

Company

OE_Job
SV_Service_

Ticket
IN_Part

AR_Item OE_Job AR_Item

AR_Bill_Contact

AR_Site_Contact

AR_Branch

AR_Branch

AR_Customer_

Site_Userdef

AR_Customer_

System_Userdef

AR_Customer_

Bank

AR_Customer_

CC

Database Structure

Page 8 of 52

Invoice Structure

AR_SalesTax
AR_SalesTax

AR_Customer_

Site
AR_Customer

AR_Invoice

AR_Category GL_Account AR_Term GL_Register
AR_Invoice_

Description

OE_Job
SV_Service_

Ticket
IN_Warehouse

AR_Taxing_

Group

AR_Invoice_

Item

AR_Deposit_

Check_Detail

AR_Unapplied_

Cash_Detail

AR_Cancel_

Queue

AR_Advance_

Deposit_Detail

AR_Credit_

Detail

AR_Item IN_Part

AR_SalesTax

AR_ACH

AR_Customer_Bil

l

GL_Deferred_

Income

IN_Journal

Database Structure

Page 9 of 52

Cash Structure

AR_Advance_

Deposit

AR_Deposit GL_Account

GL_Register
AR_Deposit_

Batch

AR_Deposit_

Check

AR_Payment_

Method

AR_Customer

AP_Vendor

SS_Employee

AR_Branch

GL_Register

AR_Deposit_

Check_Detail

AR_Branch

AR_Unapplied_

Cash

GL_Register

AR_Invoice GL_Account

Database Structure

Page 10 of 52

Vendor Structure

GE_Table1 GE_Table2 GE_Table3

GE_Table4 GE_Table5 AR_Branch

AP_Vendor

GL_Account AR_Term

AP_Vendor_Type AR_Category

AP_Vendor_

Accounts
GL_Account

GL_Account

AR_Deposit_

Check
GL_Register IN_Part

IN_Part_

Supplier

AR_Tax_

Table
AP_Check AP_Credit AP_Invoice

AP_Purchase_

Order

SV_Service_

Tech

IN_Repair_

Order
OE_Job_Install

Database Structure

Page 11 of 52

Vendor Bills Structure

AP_Invoice

GL_Account AP_Vendor AR_Term AR_Category

GL_RegisterAR_Branch IN_Warehouse OE_Job
SV_Service_

Ticket

AP_Credit_

Detail

AP_Check_

Invoices

AP_Invoice_

Expense

AP_Invoice_

Parts

AP_Invoice GL_Register

GL_RegisterAR_Branch GL_Account AP_Credit

GL_RegisterGL_Account AR_Category OE_Job

SV_Service_

Ticket
AR_Customer

IN_Unit_Of_

Measure
OE_Job GL_Register IN_Journal

AR_CustomerIN_Part
AP_Purchase_

Order_Parts

IN_Repair_

Order_Parts

SV_Service_

Ticket

Database Structure

Page 12 of 52

Check Structure

AP_Check

GL_Account AP_Vendor SY_Employee AR_Category

AR_Customer

AR_Unapplied_

Cash
GL_Register AR_Credit

AR_Advanced_

Deposit
AR_Branch

IN_Warehouse OE_Job
SV_Service_

Ticket

AP_Check_

Parts

AP_Check_

Invoices

AP_Check_

Expense

AP_Check_

Credit_Detail

IN_Journal
IN_Part

IN_Unit_Of_

Measure
AR_Customer

OE_Job
SV_Service_

Ticket

AP_Invoice_

Parts
GL_Register

AP_Invoice GL_Register AP_Credit

GL_Account GL_Register AR_Customer

AR_Category
SV_Service_

Ticket
OE_Job

AP_Invoice_

Expense

Database Structure

Page 13 of 52

Job Structure

OE_Job

AR_Customer
AR_Customer_

Site
OE_Job_Status OE_Job_Type

SY_Employee SY_Department
SV_Service_Tec

h

OE_Install_

Company

AR_Taxing_

Group

OE_Job

Ap_Check
AP_Check_

Expense

AP_Check_

Parts
AP_Credit

AP_Credit_

Expense

AP_Credit_

Parts

AP_Invoice
AP_Invoice_

Expense

AP_Invoice_

Parts

AP_Purchase_

Order

AP_Purchase_

Order_Expense

AR_Credit

AR_Customer_

Equipment

AR_Customer_

Recurring

AR_Customer_

System

AR_Invoice

AR_RMR_

Tracking
GL_Register IN_Journal IN_Requisition

IN_Requisition_

Parts

OE_Job_

Commission

OE_Quote

OE_Job_

Issue

OE_Job_Log

OE_Job_

Recurring

OE_Job_

Schedule

OE_Job_

System

OE_Job_Task
OE_Job_

TimeSheet

OE_Job_

Parts

Database Structure

Page 14 of 52

Service Ticket Structure

SV_Service_

Ticket

AR_Customer_

Site

AR_Customer_

System

AR_Customer

AR_Invoice SS_Priority AR_Category

SV_Service_

Company
SV_Problem SV_Resolution

SV_Service_

Ticket_Dispatch

SV_Service_

Ticket_Parts

SV_Service_

Ticket_Other

AP_Purchase_

Order_Expense

AP_Purchase_

Order
SY_Employee

AR_Item

SY_Employee IN_Part GL_Register AR_Item

SV_Service_

Ticket_Notes

SV_Service_Tec

h

Database Structure

Page 15 of 52

Inventory structure

IN_Part

AR_Item
IN_Product_

Line

IN_Unit_Of_

Measure
AP_Vendor IN_Manufacturer

AP_Credit_

Parts

AP_Check_

Parts

AP_Invoice_

Parts

AP_Purchase_

Orders_Parts

AR_Credit_

Item

AR_Customer_

Equipment

AR_Invoice_

Item

CS_Customer_

System_Access_

Card

IN_Alternate_

Part
IN_Cost_Layer IN_Inventory IN_Journal

IN_Part_

Supplier
IN_Part_Unit

IN_Physical_

Part

IN_Repair_

Order_Parts

OE_Job_

Parts

OE_Pricebook_

Part

OE_Quote_

Part

OE_Sales_

Package_Part

OE_Sales_

Part_Part

SV_Service_

Ticket_Parts

SY_Package_

Parts

Database Structure

Page 16 of 52

General Ledger Structure

Open Database Connectivity (ODBC)
Open Database Connectivity is the methodology created by Microsoft for different applications to talk to

different kinds of databases. With ODBC you can connect Excel to Microsoft SQL server or MS Word to

Excel for example. The first step in connecting any application to your Microsoft SQL database is to

create an ODBC connection. There is a utility for setting up ODBC connections. It is located in the

Control Panel under ODBC. Many applications though contain an implementation of the ODBC Data

Source Administrator. In our example we are going to use Excel to create an ODBC connection.

Creating an ODBC Connection with Excel
Let’s now review how to import Data into Microsoft Excel. In this example we are going to use the

feature in Excel to Query an External Data Source using Microsoft Query. This feature is available in

most recent versions of Excel but may needed to be installed as Excel does not install it by default in the

standard install.

GL_Register

AR_Customer

GL_Account

SS_Register_

Type
AP_Vendor

GL_Accounting_

Period
OE_Job

SY_Employee

SV_Service_

Ticket

AR_Branch

AR_Category

GL_Register

SY_Employee

AR_Customer
AR_Customer_

Site

OE_Job_Type

OE_Job_

Status

SY_Department

Database Structure

Page 17 of 52

If you have not already done so, you will need to create a Data Source connection to your SedonaOffice

database.

To create the new Data Source:

1) Name the data source appropriately (Here we are using “SedonaOffice GL Data” but the same

connection can be used for all of your queries so you might want a more general name.)

2) Select ‘SQL Server’ as the driver to connect to the database

3) Press the Connect button

a. On the SQL Server Login Screen select the name of the SQL Server for SedonaOffice

b. Use “SedonaReports” as the Login ID, no password is needed

c. Select the Options tab and select the name of your production SedonaOffice database

4) Press OK

Database Structure

Page 18 of 52

You now have an ODBC connection to your database.

Database Structure

Page 19 of 52

Building a Query Using Excel and MS Query
Select the data source you have previously created to create the Query. Uncheck the ‘Use the Query

Wizard...” this will take you directly to Microsoft Query to create the Query.

To begin with you need to select the Table file to use in the Query. Select the

“SO_Complete_GL_Total_YTD” table. Then click Close.

Database Structure

Page 20 of 52

The next step is to select the data fields and criteria for the data to be returned. Select all the data

elements in the Table. While it doesn’t really matter what order to display the data fields, using the

order as shown below will be more logical when viewed with Excel.

Since this table can contain thousands (hundreds of thousands of records) it is best to use some criteria

to limit the data that returns.

Criteria Selections:

1) YTD_Net <> $0 – By selecting this option only data with values will be returned.

2) Fiscal Year >= 2006 – In this case only years 2006 and 2007 are needed so limit the data to only

these fiscal years.

3) Fiscal Year < 2008 – In this case since 2008 has been created we can remove these entries since

were still reporting on 2007.

4) Net_Amount <>$0 – This is included as an ‘OR’ selection. This is necessary to return the

Retained Earnings account (more on this later).

Database Structure

Page 21 of 52

Now that we have completed the Query, click the Return Data icon, and the GL Data will be returned to

Excel.

Your data will be returned to Excel.

Database Structure

Page 22 of 52

Using Microsoft Access to Review Your Data
Why use Access instead of Excel? Excel has a row limit. The maximum number of rows you can have in a

spreadsheet varies with what version you use from as little as 32,767 rows for older versions to

1,048,576 rows in Excel 2007. This may seem like a lot of rows and for most queries it will be sufficient.

But, queries involving the GL_Register for a company that has several years of history can easily exceed

these limitations.

Excel treats all fields containing only numeric characters (0-9) as numbers unless prefaced with a ‘

character. By treating things like postal codes as numbers postal codes starting with a 0 are truncated.

Thus a postal code of 01234 becomes 1234.

Finally, Access has a built in report generator. With Access you can make complex reports with groups,

subtotals, totals, etc.

*** Caution *** ONLY use SedonaReports for an ODBC connection to Access. Otherwise changes you

make in Access can change your SQL Server data and corrupt your database.

Connecting Access via ODBC
When using an ODBC connection with Access you have two options on how to connect the data, Import

or Link.

When you Import data into Access, you create a copy of the data stored within the Access database.

This allows you to review the data when not connected to the database. Like Excel, you have to

periodically refresh the data to keep it up to date.

When you Link data to Access, the data remains in the SQL Server but Access can use it in queries and

reports. This method is constantly refreshes as the data in the SQL server changes but it will not

function if it is disconnected from the SQL Server.

Choose the External Data tab. Then choose More. Finally choose ODBC Database.

Database Structure

Page 23 of 52

Choose Import or Link and then click OK.

Choose your Data Source.

Database Structure

Page 24 of 52

Then choose the tables you wish to Import or Link and click OK. You can choose multiple tables but do

not select all. Access is not as large or as powerful as SQL Server. Choosing all will probably crash

Access.

If you chose to Link you will be asked to Select Unique Record Indicator. This is always the top item in

SedonaOffice.

Database Structure

Page 25 of 52

If you chose Import, when the operation is complete a window will be displayed showing the success of

the operation. Here you can also Save the steps you just did so refreshing the data will be easier.

Your tables will then be accessible in Access. You may mix Import and Link in the same Access database.

In the example I have Imported several customer tables and linked the branch table. Notice the

different icons for imported versus linked tables. The highlighted table is the linked branch table.

Database Structure

Page 26 of 52

Writing a query with Access
Click on the Create tab and then on Query design.

Choose the tables you wish to include in your query. A table can be selected more than once if you

need to join it to more than one Id. For our example we are going to choose all of the tables.

Database Structure

Page 27 of 52

Delete all of the joins that access automatically creates.

Create the joins according to the structure of SedonaOffice. In this case AR_Branch.Branch_Id to

AR_Customer.Branch_Id and AR_Customer.Customer_Id to AR_Customer_Bill.Customer_id.

We are going to create a mailing list so we need to drag the name and address information to the lower

pane. We are also going to drag down the branch code so we can sort on branch.

Database Structure

Page 28 of 52

Address_1 may not be all of the address information needed but if there is no address_2 we don’t want

to add a blank line. So we create a formula. Click in the Address_1 cell and then click 0n the formula

button.

Enter the following into the builder window.

Address: [dbo_AR_Customer_Bill]![Address_1] & IIf([dbo_AR_Customer_Bill]![Address_2]=

"","",Chr$(13) & Chr$(10) & [dbo_AR_Customer_Bill]![Address_2]) &

IIf([dbo_AR_Customer_Bill]![Address_3]= "","",Chr$(13) & Chr$(10) &

[dbo_AR_Customer_Bill]![Address_3])

Database Structure

Page 29 of 52

Click view to test our results.

Database Structure

Page 30 of 52

Now, let’s remove the N/A row and add a method to select which branch we want.

Under business_Name add <>”N/A”. Then under Branch_Code add =[Select Branch].

Now when we return the results we are asked to select a Branch.

Entering a branch we get results with no N/A.

Database Structure

Page 31 of 52

Creating a Report with Access
Displaying the results on the screen is useful but Access allows us to create reports. The report we are

going to create will be to create mailing labels.

First make sure the new query you created is selected and then launch the label wizard.

Database Structure

Page 32 of 52

Choose your label. You can choose by the form number if you bought labels from a major manufacturer

or just choose a label of the same size as the ones you are using.

Choose your font.

Database Structure

Page 33 of 52

Setup the fields how you want them to appear on the label.

Select any fields you want to sort on. Here I’ve selected the GE3_Description so we can get a presorted

discount from the post office.

Database Structure

Page 34 of 52

Give your report a name and save it.

Click Finish and see a preview.

Database Structure

Page 35 of 52

Creating a Grouped and Sub Totaled Report
First we will need some additional data. Again select the ODBC database import item. Add these

additional tables:

 SV_Service_Ticket

 SV_Problem

 SV_Resolution

 AR_Invoice

 SV_Service_Tech

 SY_Employee

Create a new Query and add these tables.

Database Structure

Page 36 of 52

Link the tables as shown.

Add these fields.

 dbo_SY_Employee.Employee_Code

 dbo_SV_Service_Ticket.Ticket_Number

 dbo_SV_Problem.Problem_Code

 dbo_SV_Resolution.Resolution_Code

 dbo_SV_Service_Ticket.Equipment_Charge

Database Structure

Page 37 of 52

 dbo_SV_Service_Ticket.Labor_Charge

 dbo_SV_Service_Ticket.Other_Charge

 dbo_SV_Service_Ticket.Trip_Charge

 dbo_AR_Invoice.Invoice_Number

 dbo_AR_Invoice.Amount

 dbo_SV_Service_Ticket.Ticket_Status

 dbo_SV_Service_Ticket.Service_Ticket_Id

Now we need to create a calculated field. We want a field that will be the sum of all of the charges on

the ticket. So open the Build dialog and enter these fields.

 dbo_SV_Service_Ticket.Equipment_Charge

 dbo_SV_Service_Ticket.Labor_Charge

 dbo_SV_Service_Ticket.Other_Charge

 dbo_SV_Service_Ticket.Trip_Charge

And select OK.

Also add criteria for Ticket_Status and Service_Ticket_Id.

 Save the query as ServiceBilledQ. Create a new report and select ServiceBilledQ as the data source,

select all of the fields and press next.

Database Structure

Page 38 of 52

We are going to group by Employee_Code. Select the right pointing arrow while Employee_Code is

highlighted. The result should look like the image below.

Database Structure

Page 39 of 52

Press Next. We want to sort the tickets by Ticket_Number for each Service_Tech which we can do on the

next page of the wizard.

Select Finish. A preview of the report will display. Close the preview for now and you will get the report

designer. We can now make changes to the basic report to suit our needs.

Click on any blank spot on the report to deselect everything. Now select the Employee_Code label.

Database Structure

Page 40 of 52

Delete the label. If you delete the Field just drag it back from the fields list. Continue moving fields till

your layout looks like the image below.

Now we are going to add subtotals. Select the TicketTotal field in the report detail section then choose

the Totals menu and Sum in the Design bar.

Database Structure

Page 41 of 52

Do the same for the Amount field from the invoice. We will now have a subtotal by service tech and a

grand total for all service techs.

We are almost done. Choose all of the currency fields.

Database Structure

Page 42 of 52

And then in the Properties dialog, choose “Currency” for the format.

Add a line above the subtotals and set it to black. Add one line above and two lines below the grand

total and set their color to black. Save the report and preview it.

Database Structure

Page 43 of 52

There are a number of improvements that could be added to the report. The title should be changed.

Dates could be added. Perhaps some Customer information.

In this report we have learned how to group and total. We have learned how to expand the detail

section to show more data than will fit on one line.

Basic SQL Language
The majority of SQL queries can be created with just four commands; Select, From, Where and Order By.

Select Keyword
The “Select” keyword prefaces the list of data to return. This data can be; fields, calculated fields,

constants or sub queries. Each of these data items must be separated by a comma.

Fields are the individual fields from the records in the tables. They are collected and displayed how they

are in the database. This is the most common use for the select keyword; examples might be Quantity,

Rate, Part_Code, Business_Name, etc.

Database Structure

Page 44 of 52

Calculated fields are fields that have had a process applied to them. For instance a calculated field might

be Quantity * Rate to get the extended price. Another example would be GE3_Description + ‘-‘ +

ZipPlus4 to get a complete U.S. zipcode.

Constants are numbers or characters that you want to show in your query and will be the same for the

entire column. The ‘-‘ above is a constant. So that GE3_Description, ‘-‘ and ZipPlus4 could be in separate

columns if separated by commas instead of being joined together with plus signs.

Sub queries are queries within parenthesis that return a value that is not directly related to the main

query. A common use for sub queries is to return totals IE (Select Sum(Amount) From AR_Invoice).

An example of a Select clause would be:

Select cu.Customer_Number, cb.Business_Name, cb.Address_1, cb.GE1_Description, cb.GE2_Short,

cb.GE3_Description

From Keyword
The “From” keyword prefaces the list of tables and how they are joined. IE

From AR_Customer cu Inner Join AR_Customer_Bill cb On cu.Customer_Id = cb.Customer_Id

From is the keyword, followed by the first table name and an optional short nickname or alias. Next

comes the type of Join, which will be discussed below. Then the second table is added, also followed by

an optional alias. After the two tables are named comes the “On” keyword. After the “On” keyword are

the conditions of how the tables relate to one and another, in this case only return rows where for each

Customer_Id in AR_Customer there is a matching Customer_Id in AR_Customer_Bill.

Join Keyword
Joins come in different types. The most common type and the type that is used by default if no other

type is specified is the Inner Join.

Inner Join

Inner joins only return rows where both tables are equal. Using the example below, records 2, 4 and 6

are returned because those are the only records present in both tables.

Database Structure

Page 45 of 52

Left Outer Join

Leeft and Right Outer joins return rows containing all of the records from one table and only the

matching records from the other table. So in our example below, all of the records from Table 1 are

returned but only 2, 4, and 6 are returned from Table 2 as they are the only records that match. The Left

Outer Join and Right Outer Join differ only in which table is on the left side of the Join keyword and

which is on the right side of the Join keyword. Our Left Outer Join example would look like this:

Table 1 Left Outer Join Table 2

Right Outer Join

Using the same example data, a Right Outer Join would return rows containing all of the records from

Table 2 and only 2, 4 and 6 from Table 1. Again which side of the Join Keyword a table is on is the

determining factor. Our Right Outer Join example would look like this:

Table 1 Right Outer Join Table 2

Full Outer Join

Full Outer Joins result in all of the records from both tables. It would be as if you added a Left Outer Join

and a Right Outer Join together. A Full outer Join would look like this:

Table 1 Table 2 Join

1 2 1,

2 4 2,2

3 6 3,

4 8 4,4

5 10 5,

6 12 6,6

Database Structure

Page 46 of 52

 ,8

 ,10

 ,12

Where Keyword
Where clauses control what rows are returned by matching the records against a set of conditions or

filters connected by logical operators. Each condition or filter results in a “True” or “False” condition.

Examples of “True” conditions are:

5 = 5
‘A’ < ‘B’
3 + 4 = 7
4 <> 9

Examples of “False” conditions are:

5 <> 5
‘A’ > ‘B’
4 + 4 = 7
4 = 9

Of course these examples would not do us much good, but we can substitute Fields for the numbers and

characters in the conditions, for example:

Amount = 5
BusinessName < ‘B’
InvoiceTot - CreditTot = 7
The query will return every row in which the conditions of the Where clause are true. For example, the

following query will return only invoices for $5.00. No other value invoice would be included in the

returned rows.

Select
Invoice_Number,
Amount,
Net_Due
From
AR_Invoice
Where
Amount = 5

Notice we have included the Net_Due. The value of Net_Due will not affect what rows are returned. It

will only be displayed. If we wanted to include only invoices with an outstanding balance we would

change query to look like this:

Select
Invoice_Number,
Amount,
Net_Due
From

Database Structure

Page 47 of 52

AR_Invoice
Where
Amount = 5
And
Net_Due > 0

This brings up the next concept, logical operators.

Logical Operators

The most common logical operators are And, Or, Not, Xor, Nand and Nor.

And

Value 1 Value 2 Result

False False False

False True False

True False False

True True True

Or

Value 1 Value 2 Result

False False False

False True True

True False True

True True True

Not (Reverses any result)

Value 1 Result

False True

True False

Xor (Exclusive or)

Value 1 Value 2 Result

False False False

False True True

True False True

True True False

Nand (the same as Not(Value 1 And Value 2))

Value 1 Value 2 Result

False False True

False True True

True False True

True True False

Nor (the same as Not(Value 1 Or Value 2))

Value 1 Value 2 Result

False False True

False True False

True False False

True True False

Another thing to know is the precedence of logical operators. Everyone knows that 2 + 5 * 3 is 17 and

not 21 because we know that you multiply before you add, this is the precedence of arithmetic

operators. Take for example the following data:

ID Amount City

1 5.00 Flint

Database Structure

Page 48 of 52

2 5.00 Detroit

3 0.00 Flint

4 0.00 Detroit

If our Where clause is Amount = 5 And City = ‘Flint’ Or City = ‘Detroit’ we might expect to get rows 1 and

2. In reality we would get rows 1, 2, and 4. Just as 2 + 5 * 3 should be thought of being written as 2 + (5 *

3) so the 5 * 3 is done first, Our Where clause should be thought of as being written as (Amount = 5 And

City = ‘Flint’) Or City = ‘Detroit’. The And operator is processed first just like the multiplication operator

in arithmetic. If our where clause were written as Amount = 5 And (City = ‘Flint’ Or City = ‘Detroit’) we

would get rows 1 and 2. So the order of precedence is Not, And then Or but the order of precedence

should not be relied on. Like the example, to be sure, use parentheses.

Other Where Clause Filters

So far we have looked at filters, the true false statements that use the simple comparators listed below:

Comparator True Examples False Examples

= 5 = 5, ‘A’ = ‘A’ 5 = 7, ‘X’ = ‘R’

<> 5 <> 6, ‘AB’ <> ‘CD’ 5 <> 5, ‘A’ <> ‘A’

< 5 < 6, ‘A’ < ‘G’ 5 < 5, 6 < 5, ‘A’ < ‘A’, ‘G’ < ‘A’

> 6 > 5, ‘G’ > ‘A’ 5 > 5, 5 > 6, ‘A’ > ‘G’, ‘A’ > ‘A’

<= 5 <= 6, ‘A’ <= ‘G’, 5 <= 5, ‘A’ <= ‘A’ 6 <= 5, ‘G’ <= ‘A’

>= 6 >= 5, ‘G’ >= ‘A’, 5 >= 5, ‘A’ >= ‘A’ 5 >= 6, ‘A’ >= ‘G’

Now we will look at Is Null, In, Like and Between. Is Null returns a true if the Field being examined is a

Null. Remember, a Null is not the same as a blank “” or a space “ “. A Null means not defined or never

entered. So using our Right Outer Join example:

And a where clause something like this:

Where Table1.Field Is Null

We would get the following records returned:

,7

Database Structure

Page 49 of 52

,8

,9

Is Null should not be confused with IsNull. IsNull is a function that allows you to replace nulls with a

default value. It replaces only the Nulls otherwise it uses the value of the Field. If we wanted the nulls to

be replaced with a 0 we would write a function like this:

IsNull(FieldName,0)

In compares a Field to a list of values for example:

Where City In (‘Flint’, ‘Detroit’, ‘Cleveland’)

The list of values can be either a comma separated list of literals (as above) or a sub query like the next

example:

Select
Invoice_Number,
Amount
From
AR_Invoice
Where
Service_Ticket_Id In (Select Service_Ticket_Id From SV_Service_Ticket Where Service_Ticket_Id <> 1)

The sub query must return only one field per row. The returned row must match the type of the field on

the left of the In Keyword.

Like uses characters and wild cards to create a pattern matching filter. An example of a Like filter:

Select

Customer_Number,
Customer_Name
From AR_Customer
Where Customer_Name Like 'A_a%'

This would return all customers whose name started with an “A” then contained another character of

any sort including spaces, contained an “a” in the third spot followed by zero or more characters of any

kind. Below is a chart of the wild cards and what they mean.

Wildcard character Description Example

% Any string of zero or
more characters.

WHERE title LIKE '%computer%' finds all book titles with
the word 'computer' anywhere in the book title.

_ (underscore) Any single character. WHERE au_fname LIKE '_ean' finds all four-letter first

Database Structure

Page 50 of 52

names that end with ean (Dean, Sean, and so on).

[] Any single character
within the specified
range ([a-f]) or set
([abcdef]).

WHERE au_lname LIKE '[C-P]arsen' finds author last
names ending with arsen and starting with any single
character between C and P, for example Carsen, Larsen,
Karsen, and so on. In range searches, the characters
included in the range may vary depending on the
sorting rules of the collation.

[^] Any single character
not within the specified
range ([^a-f]) or set
([^abcdef]).

WHERE au_lname LIKE 'de[^l]%' all author last names
starting with de and where the following letter is not l.

Between takes two parameters and does exactly as one would expect. Here is an example:

Select
Invoice_Number,
Amount
From AR_Invoice
Where Amount Between 0.00 AND 15.00

This returns all invoices where the amount is 0.00 through 15.00 inclusive. If you run this it will even

return the 1 record which should be the only invoice with a 0.00 Amount. Please notice the “AND”

portion of the Between filter. This is not the same as a normal And. It is NOT evaluated with the other

And’s, and Or’s. It is just part of the Between filter and should be considered only as part of the

Between. Between also works with character values IE:

Where Customer_Name Between ‘A’ AND ‘D’

Again this would include all names starting with “A” through name of “D”, not starting with “D” as there

are no wild cards here. If you want all of the “D”s, use something like this:

Where Customer_Name Between ‘A’ AND ‘Dzzz’

Order By Keywords
Order By controls what order the records are returned in. If no Order By is included, then often the

record set will be in the order of the first field in the Select list, often, but not always. If it is important

the order records are returned in, use a Order By clause. Here is an example:

Select

Customer_Number,
Customer_Name
From AR_Customer
Where Customer_Name Like 'A_a%'

Order By Customer_Name

Database Structure

Page 51 of 52

Order By can be either ascending (asc) or descending (desc). You can also mix fields and directions. For

example:

Order By Customer_Number asc, Amount desc, Invoice_Type asc

This Order By would take the records and put them in order by Customer_Number from least to

greatest, then the invoices for those customers in order by the amount from Largest to least and finally

by Invoice_Type from first to last. Fields included in the Order By do NOT need to be in the Select clause.

Union Keyword
Sometimes, we need to create a list of records that combines two separate queries. For example, we

want a list of open invoices and open credits in order by customer_number and then date meshed into

one recordset.

Select

Customer_Number,

Customer_Name,

Invoice_Date,

Net_Due,

'I'

From AR_Customer C Inner Join

AR_Invoice I On C.Customer_Id = I.Customer_Id

Where net_Due > 0

Union

Select

Customer_Number,

Customer_Name,

Credit_Date,

-1 * (Amount - Used_Amount),

'C'

From AR_Customer C Inner Join

AR_Credit I On C.Customer_Id = I.Customer_Id

Where Amount - Used_Amount > 0

Order By Customer_Number, Invoice_Date

Let’s look at this query from the top. First we have a the select clause. Notice the last item in the list is

‘I’. This literal will place a column in our recordset that has an “I” in every row that is an invoice. In the

from clause we use an Inner Join to connect the two tables. Notice the use of aliases here, the C and I.

This is done just to make the lines a bit more manageable in length. Next we have the Where clause that

returns only records that still have a Net_Due. Now we get to the new clause, the Union keyword. A

Union keyword joins the Select query above it with the Select query below it. The number and order of

columns must be the same and the data types for the columns of each query must be compatible. Below

the Union we have another query that returns the open credits. In order to find open credits we had to

take the Amount – Used_Amount. We also multiply the result time a negative one so that the credits

will be negative compared to the invoices. Also notice that the ‘I’ field from the top query is now a ‘C’

and that the Where clause contains a calculated value. Lastly we have an Order By clause. The order by

Database Structure

Page 52 of 52

clause must exist after the two queries but the fields must be named from the first query. Also, You may

Union as many queries as you want as long as you follow the rules about number, order and type of

columns.

There is one option to the Union keyword. If you use the Union key word between two queries and

some of the records returned by the first query exactly match some of the records returned by the

second query, the final recordset will have only one copy of any record. In other words, all duplicates

are reported only one. If you want to see the duplicates, use the All keyword after the Union keyword.

IE.

Union All

In our example query, this would not be a problem for two reasons. First, we are returning records

where the invoices are marked by an ‘I’ and credits by a ‘C’. Secondly, all of the invoices will be positive

amounts and all of the credits will be negative amounts.

Notes:

