M 1071 ANNUAL

SedonaOffice
i 2 @ O @

Data Mining 2

Presented By:

Matt Howe

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

Table of Contents

BasiC SQL LANGUAGE....c.cieuuiieeiieeiieeiiieeietneirenestenscrenserensersassrssssrnssssnsssensssenssssnsessnssssnssssnsssnsssans 3
SEIECE KOYWOT M. couuceueereeuseeereesseesseeaseessessseesses s esssesss s s sss s bbb S SRR SRR R £ e b AR R AR b 3
DiSEINCE ANA TOP MOTILICTS ..oevereveereereeeerseerseesesessissssesssessssesassessssssassssssssesss st sa e Re R AR AR50 3
FTOIMN KEYWOT ..ttt ittt sss st sss s s ss s s £ £ R RS R A e ek R b 3
JOMN K@Y WOT M coueeueeeeereceseeuseesseesseesse e s s ssesssessseessesss s bbb b8 SRR £ e SRR AR bbbt 4
D L T2 g 0] 1 B 4
F T LA =2l [0 1 OO OO 4
RIGIE QULET JOIN ooreeeereeveecrsserasesisssasecuseesssesassssssesssessssssssssssssssesssssssssassesssesssesasssessesssesssesssssassssssesssesssssssssssesssesssssasssssessseessseses 4
FUIL QUECT JOIN coorvvreerresresssessersssssssssssssssesssssssssassssssssssssasssssssssssssesssssasssssssssssanssanssassssasessnssanssssssssesssssansssnsssnesassssnssansssasssanesanssen 5
WHRETE KEYWOT A ...oueeuiereeeeieesseesseesseessessseesse s e bsesesesss et ses s es s £ £ RS e R AR AR bbbt 6
LOGICAL OPCIALOTS ..eorrrererereersserssesissssssesssesssesassssssesssessssssssssssssssesssssassssssesssesssssasssassesssesssssssssassssssesssesssssassssssesssesssssasssssesssessssses 7
OERET WHEEE CLAUSE FIIEOIS...ouuereereeeereerseessserisssesscsssesssesassssssesssesssesssssassssssesssesssssassssssesssesssssassssssssssesssssasssassssssesssesssesassssnes 8
OTAET BY KEYWOT A ...coieeieeieeeieeeese e tsetsessseessssssesssessse s ssse bbb s s s s R e e e a bbb 11
Advanced SOL LANgUAEEcceuuiiieeucirinnierenecerennseerensseesennsssrenssesssnnssssensssssssnssssensssssssnsssssnnsans 11
ROL 0L T =) (=P 11
UNIOTN KEYWOTA w.ooitieeeieeiereiseesse ettt essessessssesse s ssse bbbt s s bR £ eSS R R e e 12
AgEregates AN GIOUP BY . reeseeseeeeiseessestsesssesssesssesssessse bbb bbb s s R s R bbbt s b et 13
VATTADIES ettt esse bbbt s s s s R saE £ eEE R R AR AR bbb 16
AT o D =3 0 U R OF= 11 < 17
OO 17
WRIIE .covoreereeeereoeeesisceersaseseseses s seessasesessasesesessss st e85 8 5588585585824 85888858810 17
00 18
Virtual tables and VIEWSeueeiiiiiiiiiiiiiiiiiiiiiiiiiiiecessssssseieeeeeesenesssssssnsssssses 18
VITTUAL EADIES ettt st e b se e s s s s s R R R AR R bbb e 18
VIEWS et reseseseeeses s ses s sse e s es e8RS £ S8 SRR SEAEeEeEER AR AR 21
Y1101 o] (=00 (=T o 1T 22
. ®
SedonaOffice Page Z of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

Basic SQL Language
The majority of SQL queries can be created with just four commands; Select, From, Where
and Order By.

Select Keyword

The “Select” keyword prefaces the list of data to return. This data can be; fields, calculated
fields, constants or sub queries. Each of these data items must be separated by a comma.
Fields are the individual fields from the records in the tables. They are collected and
displayed as they are in the database. This is the most common use for the select keyword;
examples might be Quantity, Rate, Part_Code, Business_Name, etc.

Calculated fields are fields that have had a process applied to them. For instance a
calculated field might be Quantity * Rate to get the extended price. Another example would
be GE3_Description + ‘-* + ZipPlus4 to get a complete U.S. zipcode.

Constants are numbers or characters that you want to show in your query and will be the
same for the entire column. The ‘- above is a constant. So that GE3_Description, ‘-‘ and
ZipPlus4 could be in separate columns if separated by commas instead of being joined
together with plus signs. Calculated fields will have no name unless you assign one with the
“As” keyword. An example of using the “As” keyword would be Quantity * Rate As
Extended_Price. Notice the underscore in Extended_Price. Names must be one word unless
you place them in single quotes, ‘Extended Price’ The “As” keyword will also work with
regular fields for example Business_Name As Name.

An example of a Select clause would be:
Select cu.Customer_Number, cb.Business_Name, cb.Address_1, cb.GE1_Description,
cb.GE2_Short, cb.GE3_Description

Distinct and Top modifiers

The “Select” keyword has two modifiers, “Distinct” and “Top”. “Distinct” causes the “Select”
keyword to only display unique rows. If there are more than one identical rows exactly the
same only one will be displayed. If I select GE2_Short from my AR_Customer_Site table in
my test database [get 10185 rows. I get a row for every Site | have. If [add the “Distinct”
keyword I get back 26 rows, the 26 states that I have sites in whether it is the 6402 [have
in NJ or the one I have in OK it only returns one row.

The “Top” keyword controls how many rows to return. Top 3 would return the first three
rows from the rows meeting our criteria, even if 10,000 rows met our criteria, only three
would be returned. To control which rows are first see the “Order By” keywords below.

From Keyword

The “From” keyword prefaces the list of tables and how they are joined. IE

From AR_Customer cu Inner Join AR_Customer_Bill cb On cu.Customer_Id = cb.Customer_Id
“From” is the keyword, followed by the first table name and an optional short nickname or
alias. Next comes the type of Join, which will be discussed below. Then the second table is

SedonaOffice Page 3 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

added, also followed by an optional alias. After the two tables are named comes the “On”
keyword. After the “On” keyword are the conditions of how the tables relate to one and
another, in this case only return rows where for each Customer_Id in AR_Customer there is
a matching Customer_Id in AR_Customer_Bill

Join Keyword

Joins come in different types. The most common type and the type that is used by default if
no other type is specified is the Inner Join.

Inner Join
Inner joins only return rows where both tables are equal. Using the example below,
records 2, 4 and 6 are returned because those are the only records present in both tables.

Table 1 Table 2 Join
2.2
4.4
6,6

O0bhWN-=
QOCoO~NORAN

Left Outer Join

Left and Right Outer joins return rows containing all of the records from one table and only
the matching records from the other table. So in our example below, all of the records from
Table 1 are returned but only 2, 4, and 6 are returned from Table 2 as they are the only
records that match. The Left Outer Join and Right Outer Join differ only in which table is on
the left side of the Join keyword and which is on the right side of the Join keyword. Our Left
Outer Join example would look like this:
Table 1 Left Outer Join Table 2

Table 1 Table 2 Join

1
2.2
3
4,4
5
6,6

OCoO~NOBAN

1
2
3
4
5
6

Right Outer Join
Using the same example data, a Right Outer Join would return rows containing all of the
records from Table 2 and only 2, 4 and 6 from Table 1. Again, which side of the Join

Keyword a table is on is the determining factor. Our Right Outer Join example would look
like this:

SedonaOffice Page 4 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

Table 1 Right Outer Join Table 2
Table 1 Table 2 Join
2,2
4,4
6,6

QQoo~NoOhLN

1
2
3
4
5
6

Full Outer Join
Full Outer Joins result in all of the records from both tables. It would be as if you added a
Left Outer Join and a Right Outer Join together. A Full outer Join would look like this:

Table 1 Table 2 Join

1 2 1,

2 4 2,2

3 6 3,

4 8 4,4

5 10 5,

6 12 6,6
,8
,10
,12

Outer joins of any type are slower than inner joins. Replacing an inner join with a full outer
join can change a query that runs in two minutes to one that takes 20 or 30 minutes to run.
Only use outer joins when it is necessary.

Alias’s can be used to shorten the join clause, for example:

From AR_Customer_System

Inner Join AR_Customer_System_Userdef On
AR_Customer_System.Customer_System_Id =
AR_Customer_System_Userdef.Customer_System_Id

Can be shortened to:

From AR_Customer_System s

Inner Join AR_Customer_System_Userdef u On s.Customer_System_Id =
u.Customer_System_Id

Aliases are needed in order to refer to a table in more than one join.

From AR_Customer_Recurring r

SedonaOffice Page 5 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

Inner Join AR_Item i on r.Item_Id = i.Item_Id
Inner Join AR_Item m on r.Master_Item_Id = m.Item_Id

Allowing you to see both the recurring item and the master recurring item for a recurring
record.

Where Keyword

Where clauses control what rows are returned by matching the records against a set of
conditions or filters connected by logical operators. Each condition or filter results in a
“True” or “False” condition. Examples of “True” conditions are:

5=5
1A’<1B!
3+4=7
4<>9

Examples of “False” conditions are:
5<>5

1A’ > 1B!

4+4=7

4=9

Of course these examples would not do us much good, but we can substitute Fields for the
numbers and characters in the conditions, for example:

Amount =5

BusinessName < ‘B’

InvoiceTot - CreditTot = 7

The query will return every row in which the conditions of the Where clause are true. For
example, the following query will return only invoices for $5.00. No other value invoice
would be included in the returned rows.

Select

Invoice_Number,

Amount,

Net_Due

From

AR Invoice

Where

Amount =5

Notice we have included the Net_Due. The value of Net_Due will not affect what rows are
returned. It will only be displayed. If we wanted to include only invoices with an
outstanding balance we would change the query to look like this:

Select

Invoice_Number,

SedonaOffice Page 6 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

Amount,
Net_Due
From

AR Invoice
Where
Amount=5
And

Net Due >0

This brings up the next concept, logical operators.

Logical Operators
The most common logical operators are And, Or, Not, Xor, Nand and Nor.

And

Value 1 | Value 2 | Result
False False False
False True False
True False False
True True True
Or

Value 1 | Value 2 | Result
False False False
False True True
True False True
True True True

Not (Reverses any result)

Value 1 | Result
False True
True False

Xor (Exclusive or)

e same as Not(Value 1 And Value 2))

Value 1 | Value 2 | Result
False False False
False True True
True False True
True True False
Nand (th

Value 1 | Value 2 | Result
False False True

SedonaOffice

The #1 Financial Software for Security Companies

Page 7 of 24

2014 SedonaOffice Users Conference Data Mining 2

Marco Island, Florida Presented By: Matt Howe
False True True
True False True
True True False

Nor (the same as Not(Value 1 Or Value 2))

Value 1 | Value 2 | Result

False False True
False True False
True False False
True True False

Another thing to know is the precedence of logical operators. Everyone knows that 2 + 5 * 3
is 17 and not 21 because we know that you multiply before you add, this is the precedence
of arithmetic operators. Take for example the following data:

ID | Amount | City

1 5.00 Flint

2 5.00 Detroit
3 0.00 Flint

4 0.00 Detroit

If our Where clause is Amount = 5 And City = ‘Flint’ Or City = ‘Detroit’ we might expect to
getrows 1 and 2. In reality we would get rows 1, 2, and 4. Just as 2 + 5 * 3 should be
thought of being written as 2 + (5 * 3) so the 5 * 3 is done first, Our Where clause should be
thought of as being written as (Amount = 5 And City = ‘Flint’) Or City = ‘Detroit’. The And
operator is processed first just like the multiplication operator in arithmetic. If our where
clause were written as Amount = 5 And (City = ‘Flint’ Or City = ‘Detroit’) we would get rows
1 and 2. So the order of precedence is Not, And then Or but the order of precedence should
not be relied on. Like the example, to be sure, use parentheses.

Other Where Clause Filters
So far we have looked at filters, the true false statements that use the simple comparators
listed below:

Comparator | True Examples False Examples

= 5=5'A="A 5=7,X=TR

<> 5<>6, ‘AB’ <> ‘CD’ 5<>5 A <>A

< 5<6,'A'<'G 5<5,6<5 A <‘A,G <A
> 6>5‘G>A 5>5,5>6,A>'G,'A’>‘A’
<= 5<=6,'A’<=‘G",5<=5,'A"'<="A’ 6<=5,G <="A

>= 6>=5'G>=‘A",5>=5,'A">="A’ 5>=6,A’>='G

SedonaOffice Page 8 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

Now we will look at Is Null, In, Like and Between. Is Null returns a true if the Field being
examined is a Null. Remember, a Null is not the same as a blank “” or a space “ “. A Null
means not defined or never entered. So using our Right Outer Join example:

Table 1 Table 2 Join
2.2
4.4
6,6

OCoo~NoOhLN

And a where clause something like this:
Where Tablel.Field Is Null
We would get the following records returned:

7

,8

9

[s Null should not be confused with IsNull. IsNull is a function that allows you to replace
nulls with a default value. It replaces only the Nulls, otherwise it uses the value of the Field.
If we wanted the nulls to be replaced with a 0 we would write a function like this:
[sNull(FieldName,0)

Like uses characters and wild cards to create a pattern matching filter. An example of a Like
filter:

Select

Customer Number,

Customer Name

From AR Customer

Where Customer Name Like 'A a%'

This would return all customers whose name started with an “A” then contained another
character of any sort including spaces, contained an “a” in the third spot followed by zero
or more characters of any kind. Below is a chart of the wild cards and what they mean.

Wildcard Description Example
character
% Any string of zero or | WHERE title LIKE '%computer%' finds all book
more characters. titles with the word 'computer’ anywhere in the
book title.
_(underscore) Any single WHERE au_fname LIKE '_ean' finds all four-letter
character. first names that end with ean (Dean, Sean, and so
on).

SedonaOffice Page 9 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

[] Any single character | WHERE au_Iname LIKE '[C-P]arsen’ finds author
within the specified | last names ending with arsen and starting with
range ([a-f]) or set any single character between C and P, for
([abcdef]). example Carsen, Larsen, Karsen, and so on. In
range searches, the characters included in the
range may vary depending on the sorting rules
of the collation.

["] Any single character | WHERE au_Iname LIKE 'de[*]]%' all author last
not within the names starting with de and where the following
specified range (["a- | letter is not L
f]) or set
([*abcdef]).

Between takes two parameters and does exactly as one would expect. Here is an example:
Select

Invoice_Number,

Amount

From AR Invoice

Where Amount Between 0.00 AND 15.00

This returns all invoices where the amount is 0.00 through 15.00 inclusive. If you run this it
will even return the 1 record which should be the only invoice with a 0.00 Amount. Please
notice the “AND” portion of the Between filter. This is not the same as a normal And. Itis
NOT evaluated with the other And’s, and Or’s. It is just part of the Between filter and should
be considered only as part of the Between. Between also works with character values IE:
Where Customer Name Between ‘A’ AND ‘D’

Again this would include all names starting with “A” through name of “D”, not starting with
“D” as there are no wild cards here. If you want all of the “D”s, use something like this:

Where Customer_Name Between ‘A’ AND ‘Dzzz’

If we wanted to look at all of our customer sites in the mid-west region we could do
something like this:

Where s.GE2_Short = ‘OH’
OR s.GE2_Short = ‘MI’

OR s.GE2 _Short = ‘IN’

OR s.GE2_Short = ‘I’

OR s.GE2_Short = ‘WTI’

OR s.GE2_Short = ‘MN’

Or we could use the “IN” keyword:

Where s.GE2_Short IN (‘OH’, ‘MI’, ‘IN’, ‘IL’, ‘WT’, ‘MN’)

SedonaOffice Page 10 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

The “In” keyword checks the value in the field against a list of accepted values. If the field
value is in the list it returns true. If not, it returns false. “In” can bused to check against a list
as above or the results of a sub query.

Order By Keyword
Order By controls what order the records are returned in. If no Order By is included, then
often the record set will be in the order they were entered, often, but not always. If the

order records are returned in is important, use a Order By clause. Here is an example:
Select

Customer Number,

Customer Name

From AR Customer

Where Customer Name Like 'A a%'

Order By Customer_Name

Order By can be either ascending (asc) or descending (desc). You can also mix fields and
directions. For example:

Order By Customer_Number asc, Amount desc, Invoice_Type asc

This Order By would take the records and put them in order by Customer_Number from
least to greatest, then the invoices for those customers in order by the amount from Largest
to least and finally by Invoice_Type from first to last. Fields included in the Order By do
NOT need to be in the Select clause.

Advanced SQL Language

Sub Queries
Sub queries have two basic uses. The first is to return lists of values for the “In” check.

Where s.GE2 Short in (Select Distinct s.GE2 Short from AR Customer Site
Inner Join AR Branch b On s.Branch Id = b.Branch Id Where b.Branch Code
'Midwest"')

0

This looks more complicated then the simple list above but it has a major advantage, the
list is built dynamically. If someone adds lowa to the Midwest branch, “IA” will be
automatically added to the list for the “In”.

The second use for sub queries is to get aggregated data. This example will list the
customer number, site name and how many systems each site has:

Select c.Customer Number,
s.Business Name,

(Select Count (y.Customer System Id) From AR Customer System y

Where y.Customer Site Id = s.Customer Site Id) As 'Number of Systems'
From AR Customer c

Inner Join AR Customer Site s on c.Customer Id

s.Customer Id

SedonaOffice Page 11 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

Notice the “As” keyword, without it that column would not have a name. The “Count”
keyword will be discussed later in the section on aggregates.

Sub Queries have a few rules; first, they must only return one value. In this case it is the
count of systems. Second, notice in the sub query where clause we have “Where
y.Customer_Site_Id = s.Customer_Site_Id”. This is how the sub query knows which systems
to count. The y.Customer_Site_Id of the sub query is compared to the s.Customer_Site_Id
from the main query. Again this is something that can only be done through the use of
aliases. Were we to leave the where clause out of the sub query we would se the count of
systems would be the total number of systems in the database repeated for each customer
site. Also sub queries must be surrounded by parenthesis “()”.

Union Keyword

Sometimes, we need to create a list of records that combines two separate queries. For
example, we want a list of open invoices and open credits in order by customer_number
and then date meshed into one recordset.

Select

Customer Number,

Customer Name,

Invoice Date,

Net Due,

III

From AR Customer C Inner Join

AR Invoice I On C.Customer Id = I.Customer Id
Where net Due > 0

Union

Select

Customer Number,

Customer Name,

Credit Date,

-1 * (Amount - Used Amount),

ICI

From AR Customer C Inner Join

AR Credit I On C.Customer Id = I.Customer Id
Where Amount - Used Amount > 0

Order By Customer Number, Invoice Date

Let’s look at this query from the top. First we have a select clause. Notice the last item in the
list is ‘I". This literal will place a column in our recordset that has an “I” in every row that is
an invoice. In the From clause we use an Inner Join to connect the two tables. Notice the use
of aliases here, the C and I. This is done just to make the lines a bit more manageable in
length. Next we have the Where clause that returns only records that still have a Net_Due.
Now we get to the new clause, the Union keyword. A Union keyword joins the Select query
above it with the Select query below it. The number and order of columns must be the same
and the data types for the columns of each query must be compatible. Below the Union we
have another query that returns the open credits. In order to find open credits we had to
take the Amount - Used_Amount. We also multiply the result times a negative one so that

SedonaOffice Page 12 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

the credits will be negative compared to the invoices. Also notice that the ‘I’ field from the
top query is now a ‘C’ and that the Where clause contains a calculated value. Lastly we have
an Order By clause. The order by clause must exist after the two queries but the fields must
be named from the first query. Also, you may Union as many queries as you want as long as
you follow the rules about number, order and type of columns.

There is one option to the Union keyword. If you use the Union key word between two
queries and some of the records returned by the first query exactly match some of the
records returned by the second query, the final recordset will have only one copy of any
record. In other words, all duplicates are reported only once. If you want to see the
duplicates, use the All keyword after the Union keyword, IE. Union All

In our example query, this would not be a problem for two reasons. First, we are returning
records where the invoices are marked by an ‘I’ and credits by a ‘C’. Secondly, all of the
invoices will be positive amounts and all of the credits will be negative amounts.

Aggregates and Group By
Sometimes in queries you don’t want a large list of records, you just want the total. We do
this with Aggregates and grouping. We will look at the “Group By” keywords first.

Group By changes the way records are returned. Like records are combined into a single
record line. For instance, a simple list of customers with recurring might look like this:

Select Customer Id From AR Customer Recurring Where Terminated RMR = 'N'

And return this:
Customer_Id
384

384

384

384

384

384

384

384

384

384

384

384

384

384

384

384

1374

1374

SedonaOffice Page 13 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

1374
1374
1374
1374
1374
1758
1758
1758
1758
1758
1758

If we had many more customers in our database this would get out of hand in a hurry. We
only want to see one row per customer, so we add a group by like this:

Select Customer Id From AR Customer Recurring Where Terminated RMR = 'N'
Group By Customer Id

And we get this in return:
Customer_Id

384

1374

1758

If we wanted to include Customer _Site_Id’s it would look like this:

Select Customer Id, Customer Site Id From AR Customer Recurring Where
Terminated RMR = 'N' Group By Customer Id, Customer Site Id

And we get this in return:
Customer_Id Customer Site Id

384 596
384 597
384 599
384 601
1374 1816
1758 2247

Notice we get each Customer_Id and Customer_Site_Id combinations but no duplicates. Also
note we added Customer_Site_Id to our Group By clause. All fields must be part of the
Group By or an aggregate which we will see next.

Alist of Id’s is nice and we can see how many customers and sites, but it doesn’t tell us how
many recurrings or provide us with the Monthly_Amount, for that we need aggregates.
Aggregates contain, among others, functions like AVG (average of a column), COUNT

SedonaOffice Page 14 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

(count number of items in a grouped column), MAX (maximum value in a column), MIN
(minimum value in a column) and SUM (the sum of the values in a grouped column. Let’s
look at how we would use the COUNT function first. If we add COUNT functions to our
query it will look like this:

Select Customer Id, Customer Site Id, COUNT (Customer Recurring Id) as
Recurrings From AR Customer Recurring Where Terminated RMR = 'N' Group By
Customer Id, Customer Site Id

And would return this:
Customer_Id Customer Site Id Recurrings

384 596 8
384 597 2
384 599 4
384 601 2
1374 1816 7
1758 2247 6

Notice we have to supply a name for the aggregate (as Recurrings) but it simply counts how
many rows are grouped together.

We can also count the “Distinct” systems by adding a COUNT containing the DISTINCT key
word.

Select Customer Id, Customer Site Id, COUNT (distinct Customer System Id) as
Systems, COUNT (Customer Recurring Id) as Recurrings

From AR Customer Recurring Where Terminated RMR = 'N' Group By Customer Id,
Customer Site Id

Would give us:

Customer_Id Customer Site Id Systems Recurrings
384 596 1 8

384 597 1 2

384 599 1 4

384 601 1 2

1374 1816 1 7

1758 2247 1 6

The final aggregate that we are going to look at is the Sum function. First we will place a
Sum at the end of the select list.

Select Customer Id, Customer Site Id, COUNT (distinct Customer System Id) as

Systems, COUNT (Customer Recurring Id) as Recurrings , SUM(Monthly Amount) as
Monthly

From AR Customer Recurring Where Terminated RMR = 'N' Group By Customer Id,

Customer Site Id

SedonaOffice Page 15 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

Which returns:

Customer_Id Customer Site Id Systems Recurrings Monthly
384 596 1 8 411.75
384 597 1 2 104.50
384 599 1 4 203.00
384 601 1 2 57.50
1374 1816 1 7 111.10
1758 2247 1 6 82.50

Each “Monthly” is the sum of all of the monthlies on that system.

Variables

Variables are temporary storage that can be used like fields except they don’t affect the
database. A variable must be declared showing the variable name starting with the “@”
character and the variable type. Multiple variables can be created by the same Declare by
separating them with commas:

Declare @remove flag char
Declare @remove flag char,

@credit amount money,
@credit type nvarchar (15)

Common variable types are:

Exact Numerics Character Strings
numeric char
decimal varchar
int text
money
Unicode Character Strings
Approximate Numerics nchar
float nvarchar
ntext
Date and Time
date Other Data Types
datetime timestamp
time uniqueidentifier

Variables exist as long as the query runs. They can be used every where a data field would
be used. They can be assigned a value by using the Select or Set keywords:

Select Q@remove flag = 'Y'
Set @credit amount = Monthly amount
Set @credit type = 'Service Credit'

SedonaOffice Page 16 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

If, While and Case

If, While and Case control how the query flows and what the query returns to us. They use
the same logical methods as the Where clause but can change the entire way a query works.

If

If we want to make a simple decision, left or right; positive or negative; add or subtract;
then we want to use If and possibly Else. In its simplest for the If statement contains the “If”
keyword followed logical expression like we would use in a where clause and finally a
statement to execute if the logical expression is true.

IF monthly amount < 0
SELECT Q@remove flag = 'Y'

In this example if the monthly_amount is less than zero, the remove_flag is set to equal Y.
But what if we want to do more than one thing if the test is true? We use a code block. Code
blocks are created by placing one or more SQL statements between the “Begin” and “End”
keywords.

IF monthly amount < 0
BEGIN
SELECT Q@remove flag = 'Y'
SELECT Q@credit amount = monthly amount
END

In the new example if the monthly_amount is less than zero, the remove_flag is set to equal
Y and the credit_amount is set to the monthly_amount. What is the value of remove_flag if
the test is false? What it was before if it has already been used or null if it has not been
used. Using the “Else” keyword we can execute statements when the test is false also.

IF monthly amount < 0

BEGIN
SELECT Q@remove flag = 'Y'
SELECT Q@credit amount = monthly amount
END
ELSE
BEGIN
SELECT Q@remove flag = 'N'
SELECT @invoice amount = monthly amount
END

While

While loops will perform a task repeatedly as long as the logical expression following the
“While” keyword is true. Again, the task can be a single statement or a code block. This
example finds the last day of the previous month.

SedonaOffice Page 17 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

set @enddate = @middledate

While DATEPART (day, (@enddate) <= DATEPART (day, @middledate)
Begin
SELECT @enddate = DATEADD (day, -1, @enddate)
End

This example uses “DATEPART” to get the day of the month for a given date. Also note that
a code block can consist of a single statement. This is often done to make the code easier to
read. In the above example we set the value of the @enddate equal to the value of
@middledate to make sure the loop starts. If the logical expression starts as false, the loop
will not be executed at all.

Case

Case statements allow you to execute different statements based on logical expressions.
The case statement acts similar to a series of If statements except in a Case statement only
the first true logical expression is executed where as in a series of If statements all of the
statements with true logical expressions would execute. This example sets the plus or
minus value of the GL_Register.Amount based on the value of the GL_Register
.Credit_Or_Debit value.

Select Sum(Amount *
Case When Credit Or Debit ='C' Then -1
When Credit Or Debit ='D' Then 1
ELSE 1
End)
From GL Register

Each When/Then pair returns a value and finally if for some reason the
Credit Or Debit field contains some other than a C or D, the optional Else
part sets a default value. Notice the End statement. This is required for
Case statements.

Virtual tables and Views

Wouldn't it be great if we could create tables with just the information we wanted and then
use them in queries? With virtual tables and views we can do exactly that.

Virtual tables

Virtual tables start as a normal select query. They have Select, From and Where clauses.
The can also contain Group By, Unions and Sub Queries. Once you have the records being
returned how you want, place parenthesis “()” around the query. After the closing
parenthesis give the virtual table a name or alias. Here is a simple example:

(Select
AR Customer.Customer Number As 'CustNum',
AR Customer.Customer Id as 'CustId',

SedonaOffice Page 18 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

AR customer Bill.Business Name + AR Customer Bill.Commercial As
'Bill Postal Name',

AR customer Bill.Address 1 As 'Bill Address 1",

AR customer Bill.Address 2 As 'Bill Address 2',

AR customer Bill.GEl Description As 'Bill City',

AR customer Bill.GE2 Short As 'Bill State Abbreviation',

AR customer Bill.GE3 Description As 'Bill Postal Code',

AR Customer Bill.Zip Code Plus4 As 'Bill Zip Plus4'

From

AR Customer

Inner JOIN AR Customer Bill On AR Customer.Customer Id =

AR Customer Bill.Customer Id

Inner JOIN SS Customer Status On AR Customer.Customer Status Id =
SS_Customer Status.Customer Status Id

Where
AR Customer.Customer Id <> 1 And
Customer Status Code = 'AR') MailAddr

This will return all active customer Bill To addresses. To see a field in our virtual table we
would use the alias followed by the name we assigned to the field. IE. MailAddr.CustNum.

We can join virtual tables just like regular tables, see the example below:

Select

MailAddr.CustNum,

i.Invoice Number

From AR Invoice i

inner join

(Select

AR Customer.Customer Number As 'CustNum',

AR Customer.Customer Id as 'CustId',

AR customer Bill.Business Name + AR Customer Bill.Commercial As
'Bill Postal Name',

AR customer Bill.Address 1 As 'Bill Address 1',

AR customer Bill.Address 2 As 'Bill Address 2',

AR customer Bill.GEl Description As 'Bill City',

AR customer Bill.GE2 Short As 'Bill State Abbreviation',
AR customer Bill.GE3 Description As 'Bill Postal Code',
AR Customer Bill.Zip Code Plus4 As 'Bill Zip Plus4'

From

AR Customer

Inner JOIN AR Customer Bill On AR Customer.Customer Id =
AR Customer Bill.Customer Id

Inner JOIN SS Customer Status On AR Customer.Customer Status Id =
SS_Customer Status.Customer Status Id

Where
AR Customer.Customer Id <> 1 And
Customer Status Code = 'AR') MailAddr

on i.Customer Id = MailAddr.CustId
We can even join two virtual tables to create a complex query:

Select

SedonaOffice Page 19 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

MailAddr.CustNum,

MailAddr.Bill City,

inv.Amount,

inv.Net Due,

inv.PastDue

From

(Select

i.Customer Id as 'CustId',

i.Invoice Date as 'Date',

DATEADD (d, t.Days Net Due,i.Invoice Date) as 'Due Date',
i.Amount as 'Amount',

i.Net Due,

DATEDIFF (d, DATEADD (d, t.Days Net Due,i.Invoice Date),GETDATE()) as 'PastDue'
From AR Invoice i

Inner Join AR Term t on i.Term Id = t.Term Id

Where

DATEDIFF (d, DATEADD (d, t.Days Net Due,i.Invoice Date), GETDATE()) > 10
and i.Net Due > 0) inv

inner join

(Select

AR Customer.Customer Number As 'CustNum',

AR Customer.Customer Id as 'CustId',

AR customer Bill.Business Name + AR Customer Bill.Commercial As
'Bill Postal Name',

AR customer Bill.Address 1 As 'Bill Address 1",

AR customer Bill.Address 2 As 'Bill Address 2',

AR customer Bill.GEl Description As 'Bill City',

AR customer Bill.GE2 Short As 'Bill State Abbreviation',

AR customer Bill.GE3 Description As 'Bill Postal Code',

AR Customer Bill.Zip Code Plus4 As 'Bill Zip Plus4'

From

AR Customer

Inner JOIN AR Customer Bill On AR Customer.Customer Id =

AR Customer Bill.Customer Id

Inner JOIN SS Customer Status On AR Customer.Customer Status Id =
SS_Customer Status.Customer Status Id

Where
AR Customer.Customer Id <> 1 And
Customer Status Code = 'AR') MailAddr

on inv.CustId = MailAddr.CustId

Here we have created two virtual tables. The first is called inv and contains information
about invoices. The second virtual table, MailAddr, contains mailing information. Now this
may seem like a lot of work to accomplish the same thing as a normal query would do. But
there are times when virtual tables are absolutely required. For example, Using Top, If,
Case or When in an aggregate query (Group By) is not allowed. If you needed to use this
combination you would need to first create a virtual table containing the Top, If, Case or
When. Then using the virtual table you could create your Aggregate query.

SedonaOffice Page 20 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

Views

What if you have a query you use quite often, like our MailAddr query above. Wouldn't it be
nice to have it always available without having to type it in each time? Views allow you to
do that. A view is a query that is precompiled by the SQL Server and stored under a name
you give it. SedonaOffice has created a number of Views for your use. They are listed in the
dbExplorer on the Views tab. But you can make your own also. To create a view you use the
Create View command:

Create View [dbo].[MailingAddr]

as

Select

AR Customer.Customer Number As 'CustNum',

AR Customer.Customer Id as 'CustId',

AR customer Bill.Business Name + AR Customer Bill.Commercial As
'Bill Postal Name',

AR customer Bill.Address 1 As 'Bill Address 1',

AR customer Bill.Address 2 As 'Bill Address 2',

AR customer Bill.GEl Description As 'Bill City',

AR customer Bill.GE2 Short As 'Bill State Abbreviation',

AR customer Bill.GE3 Description As 'Bill Postal Code',

AR Customer Bill.Zip Code Plus4 As 'Bill Zip Plus4'

From

AR Customer

Inner JOIN AR Customer Bill On AR Customer.Customer Id =

AR Customer Bill.Customer Id

Inner JOIN SS Customer Status On AR Customer.Customer Status Id =
SS_Customer Status.Customer Status Id

Where
AR Customer.Customer Id <> 1 And
Customer Status Code = 'AR'

This creates a view named MailingAddr. It can be used just like any table. There are a few
considerations though.

* The [dbo] insures that the view will e available to all valid SQL users.

* You can not create a view named the same as an existing view. You must “Drop” the
other view first.

* Do not use any name already in use by SedonaOffice. We will over-write it during
the next update. We recommend you use your name or your company name as part
of the view’s name. IE. Matt_Mail Addr or Acme_Mail Addr.

* Rarely, because it is precompiled, a view may not work the same as the query it is
based on. Always check it before using it for anything serious.

To over write an existing view, add the four lines below to the Create View script. This will
Drop the existing view first before the Create script.

IF EXISTS (SELECT * FROM sys.views WHERE Objectiid =
OBJECT ID(N'[dbo].[MailingAddr]"))

DROP VIEW [dbo].[MailingAddr]

GO

SedonaOffice Page 21 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

Create View [dbo].[MailingAddr]

as

Select

AR Customer.Customer Number As 'CustNum',

AR Customer.Customer Id as 'CustId',

AR customer Bill.Business Name + AR Customer Bill.Commercial As
'Bill Postal Name',

AR customer Bill.Address 1 As 'Bill Address 1',

AR customer Bill.Address 2 As 'Bill Address 2',

AR customer Bill.GEl Description As 'Bill City',

AR customer Bill.GE2 Short As 'Bill State Abbreviation',

AR customer Bill.GE3 Description As 'Bill Postal Code',

AR Customer Bill.Zip Code Plus4 As 'Bill Zip Plus4'

From

AR Customer

Inner JOIN AR Customer Bill On AR Customer.Customer Id =

AR Customer Bill.Customer Id

Inner JOIN SS Customer Status On AR Customer.Customer Status Id =
SS_Customer Status.Customer Status Id

Where
AR Customer.Customer Id <> 1 And
Customer Status Code = 'AR'

Sample queries

Get all customers whose annual is between $239.00 and $245.00:

Select

c.Customer Number,

b.Business Name,

(Select Sum(r.Monthly Amount*12) From AR Customer Recurring r where

r.Cycle Start Date <= GETDATE () And (r.Cycle End Date <= {d'1900-01-01"} Or
r.Cycle End Date > GETDATE())

And r.Customer Id = c.Customer Id) as Annual

From AR Customer c

Inner Join AR Customer Bill b on c.Customer Id = b.Customer Id

Where b.Is Primary = 'Y' And (Select Sum(r.Monthly Amount*12) From

AR Customer Recurring r where

r.Cycle Start Date <= GETDATE () And (r.Cycle End Date <= {d'1900-01-01"} Or
r.Cycle End Date > GETDATE())

And r.Customer Id = c.Customer Id) Between 239.00 and 245.00

Get a range of service appointments and dispatch times:

SELECT t.Ticket Number,
d.Schedule Time,
d.Dispatch Time,
e.Employee Code,
c.Customer Number,

SedonaOffice Page 22 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

c.Customer Name

FROM SV_Service Ticket t

INNER JOIN SV _Service Ticket Dispatch d ON t.Service Ticket Id =

d.Service Ticket Id

INNER JOIN SV _Service Tech tech ON d.Service Tech Id = tech.Service Tech Id
INNER JOIN SY Employee e ON tech.Employee Id = e.Employee Id

INNER JOIN AR Customer c ON t.Customer ID = c.Customer ID

WHERE d.Schedule Time >= {d'2013-01-01"} AND d.Schedule Time < {d'2013-01-
31"}

ORDER BY d.Schedule Time

Get how much they paid last year in monitoring, service and installations:

Select

c.Customer Number,

b.Business Name,

(Select IsNull (SUM(i.Amount), 0) From AR Invoice i

Where i.Type JSCO = 'C' And i.Invoice Date Between {d'2012-01-01'} And
{d'2012-12-31"}

And 1i.Customer Id = c.Customer Id) as 'Monitoring',

(Select IsNull (SUM(i.Amount), 0) From AR Invoice i

Where i.Type JSCO = 'S' And i.Invoice Date Between {d'2012-01-01'} And
{d'2012-12-31"}

And i.Customer Id = c.Customer Id) as 'Service',

(Select IsNull (SUM(i.Amount), 0) From AR Invoice i

Where i.Type JSCO = '"J' And i.Invoice Date Between {d'2012-01-01'} And
{d'2012-12-31"}

And 1i.Customer Id = c.Customer Id) as 'Installs',

(Select IsNull (SUM(i.Amount), 0) From AR Invoice i

Where i.Type JSCO = 'O' And i.Invoice Date Between {d'2012-01-01'} And
{d'2012-12-31"}

And i.Customer Id = c.Customer Id) as 'Other'

From AR Customer c

Inner Join AR Customer Bill b on b.Customer Id = c.Customer Id

Get a detailed list of cancelled accounts for sales to do follow up calls:

Select

cu.Customer Number,
cu.Customer Name,

st.Customer Status Code,
cb.Branch Code as Customer Branch,
ty.Type Code,

cs.Business Name,
cs.Address_ 1,

cs.Address_ 2,

cs.GEl1 Description,

cs.GE2 Short,

cs.GE3 Description,
cs.Zip Code Plus4,

sb.Branch Code as Site Branch,
ts.System Code,
pt.Panel Type Code,
cgq.CS_Cancelled Date,

SedonaOffice Page 23 of 24

The #1 Financial Software for Security Companies

2014 SedonaOffice Users Conference Data Mining 2
Marco Island, Florida Presented By: Matt Howe

cu.Customer Since,

cqg.Effective Date,

cg.Reference,

cqg.Memo,

it.Item Code,

cr.Monthly Amount,

cg.Balance Of Contract,

cqg.Full Cancel

From AR Customer cu

Inner Join AR Type Of Customer ty On cu.Customer Type Id = ty.Type Id
Inner Join SS Customer Status st On cu.Customer Status Id =
st.Customer Status Id

Inner Join AR Customer Site cs On cu.Customer Id cs.Customer Id
Inner Join AR Branch cb On cu.Branch Id = cb.Branch Id

Inner Join AR Branch sb On cs.Branch Id = sb.Branch Id

Inner Join AR Customer System sy On cs.Customer Site Id = sy.Customer Site Id
Inner Join SY System ts On sy.System Id = ts.System Id

Inner Join SY Panel Type pt On sy.Panel Type Id = pt.Panel Type Id
Inner Join AR Customer Recurring cr On sy.Customer System Id =
cr.Customer System Id

Inner Join AR Item it on cr.Item Id = it.Item Id

Inner Join AR Cancel Queue cq On cu.Customer Id = cqg.Customer Id
Inner Join AR Cancel Queue Site gs On cg.Cancel Queue Id = gs.Cancel Queue Id
Where cr.Cycle End Date = cg.Effective Date And cs.Customer Site Id =
gs.Customer Site Id

And cq.Effective Date Between {d'2012-01-01"'} And {d'2012-12-31"'}
Order By cu.Customer Number

Notes:

SedonaOffice Page 24 of 24

The #1 Financial Software for Security Companies

